EMP is funded through the Horizon2020 programme of the European Commission.
Selected Publications

Can the displacemon device test objective collapse models?

Lydia A. Kanari-Naish, Jack Clarke, Michael R. Vanner, Edward A. Laird

Testing the limits of the applicability of quantum mechanics will deepen our understanding of the universe and may shed light on the interplay between quantum mechanics and gravity. At present there is a wide range of approaches for such macroscopic tests spanning from matter-wave interferometry of large molecules to precision measurements of heating rates in the motion of micro-scale cantilevers. The “displacemon” is a proposed electromechanical device consisting of a mechanical resonator flux-coupled to a superconducting qubit enabling generation and readout of mechanical quantum states. In the original proposal, the mechanical resonator was a carbon nanotube, containing 106 nucleons. Here, in order to probe quantum mechanics at a more macroscopic scale, we propose using an aluminum mechanical resonator on two larger mass scales, one inspired by the Marshall–Simon–Penrose–Bouwmeester moving-mirror proposal, and one set by the Planck mass. For such a device, we examine the experimental requirements needed to perform a more macroscopic quantum test and thus feasibly detect the decoherence effects predicted by two objective collapse models: Diósi–Penrose and continuous spontaneous localization. Our protocol for testing these two theories takes advantage of the displacemon architecture to create non-Gaussian mechanical states out of equilibrium with their environment and then analyzes the measurement statistics of a superconducting qubit. We find that with improvements to the fabrication and vibration sensitivities of these electromechanical devices, the displacemon device provides a new route to feasibly test decoherence mechanisms beyond standard quantum theory.

AVS Quantum Sci. 3, 045603 (2021)

doi: 10.1116/5.0073626