

- Andreev Reflection in Superfluid He-3: A Probe for Quantum Turbulence
Bradley et al., Annual Review of Condensed Matter Physics Vol. 8: 407-430 (2017) - Operating Nanobeams in a Quantum Fluid
Bradley et al., Nature Scientific Reports 7, 4876 (2017) - Single Quantum Level Electron Turnstile
D.M.T. Van Zanten et al., Phys. Rev. Lett. 116 166801 (2016) - Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices
J. Röntynen, T. Ojanen, Phys. Rev. Lett. 114 236803, (2015) - Squeezing of Quantum Noise of Motion in a Micromechanical Resonator
J.-M. Pirkkalainen et al., Phys. Rev. Lett 115, 24 (2015) - Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters
S. Kempf, A. Ferring, A. Fleischmann, C. Enss, Supercond. Sci. Technol. 28 , 045008 (2015)
Fast tunable high Q-factor superconducting microwave resonators
S. Mahashabde, E. Otto, D. Montemurro, S. de Graaf, S. Kubatkin, and A. DanilovWe present fast tunable superconducting microwave resonators fabricated from planar NbN on a sapphire substrate. The λ/4 wavelength resonators are tuning fork shaped and tuned by passing a dc current which controls the kinetic inductance of the tuning fork prongs. The λ/4 section from the open end operates as an integrated impedance converter which creates a nearly perfect short for microwave currents at the dc terminal coupling points, thus preventing microwave energy leakage through the dc lines. We measure an internal quality factor Qint>10E5 over the entire tuning range. We demonstrate a tuning range of >3% and tuning response times as short as 20 ns for the maximum achievable detuning. Due to the quasi-fractal design, the resonators are resilient to magnetic fields of up to 0.5 T
arXiv:2003.11068
arxiv: https://arxiv.org/abs/2003.11068