- Andreev Reflection in Superfluid He-3: A Probe for Quantum Turbulence

Bradley et al., Annual Review of Condensed Matter Physics Vol. 8: 407-430 (2017) - Operating Nanobeams in a Quantum Fluid

Bradley et al., Nature Scientific Reports**7**, 4876 (2017) - Single Quantum Level Electron Turnstile

D.M.T. Van Zanten et al., Phys. Rev. Lett.**116**166801 (2016) - Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices

J. Röntynen, T. Ojanen, Phys. Rev. Lett.**114**236803, (2015) - Squeezing of Quantum Noise of Motion in a Micromechanical Resonator

J.-M. Pirkkalainen et al., Phys. Rev. Lett**115**, 24 (2015) - Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters

S. Kempf, A. Ferring, A. Fleischmann, C. Enss, Supercond. Sci. Technol.**28**, 045008 (2015)

## Scaling laws for the bifurcation-escape rate in a nanomechanical resonator

*Defoort, M. and Puller, V. and Bourgeois, O. and Pistolesi F. and Collin, E.*

We report on experimental and theoretical studies of the fluctuation-induced escape time from a metastable state of a nanomechanical Duffing resonator in a cryogenic environment. By tuning *in situ* the nonlinear coefficient γ we could explore a wide range of the parameter space around the bifurcation point, where the metastable state becomes unstable. We measured in a relaxation process the distribution of the escape times. We have been able to verify its exponential distribution and extract the escape rate Γ. We investigated the scaling of Γ with respect to the distance to the bifurcation point and γ, finding an unprecedented quantitative agreement with the theoretical description of the stochastic problem. Simple power scaling laws turn out to hold in a large region of the parameter space, as anticipated by recent theoretical predictions. These unique findings, implemented in a model dynamical system, are relevant to all systems experiencing underdamped saddle-node bifurcation.

*Phys. Rev. E 92 (2015) 050903(R)*

doi:

*10.1103/PhysRevE.92.050903*