Selected Publications

- Andreev Reflection in Superfluid He-3: A Probe for Quantum Turbulence

Bradley et al., Annual Review of Condensed Matter Physics Vol. 8: 407-430 (2017) - Operating Nanobeams in a Quantum Fluid

Bradley et al., Nature Scientific Reports**7**, 4876 (2017) - Single Quantum Level Electron Turnstile

D.M.T. Van Zanten et al., Phys. Rev. Lett.**116**166801 (2016) - Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices

J. Röntynen, T. Ojanen, Phys. Rev. Lett.**114**236803, (2015) - Squeezing of Quantum Noise of Motion in a Micromechanical Resonator

J.-M. Pirkkalainen et al., Phys. Rev. Lett**115**, 24 (2015) - Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters

S. Kempf, A. Ferring, A. Fleischmann, C. Enss, Supercond. Sci. Technol.**28**, 045008 (2015)

## Nonequilibrium fluctuations in quantum heat engines: Theory, example, and possible solid state experiments

*M. Campisi, J. Pekola, R. Fazio*

We study stochastic energetic exchanges in quantum heat engines. Due to microreversibility, these obey a fluctuation relation, called the heat engine fluctuation relation, which implies the Carnot bound: no machine can have an efficiency greater than Carnot's efficiency. The stochastic thermodynamics of a quantum heat engine (including the joint statistics of heat and work and the statistics of efficiency) are illustrated by means of an optimal two-qubit heat engine, where each qubit is coupled to a thermal bath and a two-qubit gate determines energy exchanges between the two qubits. We discuss possible solid-state implementations with Cooper-pair boxes and flux qubits, quantum gate operations, and fast calorimetric on-chip measurements of single stochastic events.

*new journal of physics 17 , 1-14*

doi:

*10.1088/1367-2630/17/3/035012*