

- Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
G. P. Fedorov et al., Phys. Rev. Lett. 126, 180503 (2021) - Path-Dependent Supercooling of the
He3 Superfluid A-B Transition
Dmytro Lotnyk et al., Phys. Rev. Lett. 126, 215301 (2021) - Superconductivity in an extreme strange metal
D. H. Nguyen et al., Nat Commun 12, 4341 (2021) - High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates
Xin Zhou et al., Nano Lett. 21, 5738-5744 (2021) - Measurement of the 229Th isomer energy with a magnetic micro-calorimeter
T. Sikorsky et al., Phys. Rev. Lett. 125 (2020) 142503
Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer
Mohammad Samani, Christian P. Scheller, Nikolai Yurttagül, Kestutis Grigoras, David Gunnarsson, Omid Sharifi Sedeh, Alexander T. Jones, Jonathan R. Prance, Richard P. Haley, Mika Prunnila, Dominik M. Zumbühl
Access to lower temperatures has consistently enabled scientific breakthroughs. Pushing the limits of \emph{on-chip} temperatures deep into the microkelvin regime would open the door to unprecedented quantum coherence, novel quantum states of matter, and also the discovery of unexpected phenomena. Adiabatic demagnetization is the workhorse of microkelvin cooling, requiring a dilution refrigerator precooling stage. Pulse-tube dilution refrigerators have grown enormously in popularity due to their vast experimental space and independence of helium, but their unavoidable vibrations are making microkelvin cooling very difficult. On-chip thermometry in this unexplored territory is also not a trivial task due to extreme sensitivity to noise. Here, we present a pulse-tube compatible microkelvin sample holder with on-board cooling and microwave filtering and introduce a new type of temperature sensor, the gate Coulomb blockade thermometer (gCBT), working deep into the microkelvin regime. Using on- and off-chip cooling, we demonstrate electronic temperatures as low as 224
arXiv:2110.06293
arxiv: https://arxiv.org/abs/2110.06293