Selected Publications

Beyond linear coupling in microwave optomechanics

D. Cattiaux, X. Zhou, S. Kumar, I. Golokolenov, R. R. Gazizulin, A. Luck, L. Mercier de L├ępinay, M. Sillanpää, A. D. Armour, A. Fefferman, E. Collin

We explore the nonlinear dynamics of a microwave optomechanical system consisting of a drumhead nano-electro-mechanical resonator (NEMS) capacitively coupled to a microwave cavity. Experiments are performed under a strong microwave Stokes pumping which triggers mechanical self-sustained oscillations. We analyze the results in the framework of an extended nonlinear optomechanical theory, and demonstrate that quadratic and cubic coupling terms in the opto-mechanical Hamiltonian have to be considered. Quantitative agreement with the measurements is obtained considering only genuine geometrical nonlinearities: no thermo-optical instabilities are observed, in contrast with laser-driven systems. Based on these results, we describe a method to quantify nonlinear properties of microwave optomechanical systems. This method is clearly a new technique available in the quantum electro-mechanics toolbox, where higher-order coupling terms are proposed as a new resource for specific quantum schemes like quantum non-demolition (QND) measurements. We also find that the motion imprints a wide comb of extremely narrow peaks in the microwave output field, which could also be exploited in specific microwave-based measurements, potentially limited only by the quantum noise of the optical {\it and} the mechanical fields for a ground-state cooled NEMS device.

Phys. Rev. Research 2 (2020) 033480

doi: 10.1103/PhysRevResearch.2.033480