User Tools

Site Tools


wiki:demag_papers

This is an old revision of the document!


Articles on Nuclear Demagnetization

Nuclear Cooling

  • Hyperfine Enhanced Nuclear Magnetic Cooling in Van Vleck Paramagnetic Intermetallic Compounds, K. Andres, E. Bucher, Journal of Applied Physics 42 (1971) 1522-1527, https://doi.org/10.1063/1.1660323

Nuclear Demagnetization of PrS and PrNi5, C. Buchal, K. J. Fischer, M. Kubota, R. M. Mueller, F. Pobell, Journal de Physique Lettres 39 (1978) L457-L458, doi.org/10.1051/jphyslet:019780039023045700

Two Stage Nuclear Demagnetization Experiments, R. Hunik, E. Bongers, J.A. Konter, W.J. Huiskamp, Journal de Physique Colloques 39 (1978) C6-1155-C6-1156, doi.org/10.1051/jphyscol:19786511

A Double-stage nuclear demagnetization refrigerator, R. M. Mueller, Chr. Buchal, H. R. Folle, M. Kubota, F. Pobell, Cryogenics 20 (1980) 395-407, doi.org/10.1016/S0011-2275(80)80049-X

Nuclear refrigeration properties of PrNi5, H. R. Folle, M. Kubota, Ch. Buchal, R. M. Mueller, F. Pobell, Zeitschrift für Physik B Condensed Matter 41 (1981) 223–228, doi.org/10.1007/BF01294426

The quest for ultralow temperatures: What are the limitations?, F. Pobell, Physica B+C 109–110 (1982) 1485-1498, doi.org/10.1016/0378-4363(82)90172-3

New method for nuclear cooling into the microkelvin regime, D. I. Bradley, A. M. Guénault, V. Keith, C. J. Kennedy, I. E. Miller, S. G. Musset, G. R. Pickett, W. P. Pratt, Jr., Journal of Low Temperature Physics 57 (1984) 359-390, doi.org/10.1007/BF00681199

Two-stage nuclear demagnetization refrigerator reaching 27 µK, H. Ishimoto, N. Nishida, T. Furubayashi, M. Shinohara, Y. Takano, Y. Miura, K. Ôno, Journal of Low Temperature Physics 55 (1984) 17–31, doi.org/10.1007/BF00683649

Adiabatic nuclear demagnetization: Two sophisticated experiments, O. V. Lounasmaa, Physica B+C 126 (1984) 8-17, doi.org/10.1016/0378-4363(84)90140-2

Optimization procedure for the cooling of Liquid 3He by adiabatic demagnetization of praseodymium nickel, J. M. Parpia, W. P. Kirk, P. S. Kobiela, T. L. Rhodes, Z. Olejniczak, G. N. Parker, Review of Scientific Instruments 56 (1985) 437-443, doi.org/10.1063/1.1138319

The Bayreuth Nuclear Demagnetization Refrigerator, K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, F. Pobell, Journal of Low Temperature Physics 73 (1988) 101-136, doi.org/10.1007/BF00114919

A Nuclear Demagnetization Cryostat for Thermometry, W. Buck, D. Hechtfischer, A. Hoffmann, Physica B 165 1990) 49-50

Compact PrNi5 nuclear demagnetization cryostat, S. A. J. Wiegers, T. Hata, C. C. Kranenburg, P. G. van de Haar, R. Jochemsen, G. Frossati, Cryogenics 30 (1990) 770-774, doi.org/10.1016/0011-2275(90)90274-G

Nuclear refrigeration and thermometry at microkelvin temperatures, F. Pobell, Journal of Low Temperature Physics 87 (1992) 635–649, doi.org/10.1007/BF00114919

Nuclear demagnetization cryostat at University of Florida Microkelvin Laboratory, J. Xu, O. Avenel, J. S. Xia, M.-F. Xu, T. Lang, P. L. Moyland, W. Ni, E. D. Adams, G. G. Ihas, M. V. Meisel, N. S. Sullivan, Y. Takano, Journal of Low Temperature Physics 89 (1992) 719-723, doi.org/10.1007/BF00694125

A nuclear demagnetization cryostat for nuclear ordering of hcp solid 3He, S. Abe, M. Nozawa, A. Ikeya, H. Tsujii, S. Inoue, T. Mamiya, Physica B: Condensed Matter 194–196 (1994) 49-50, doi.org/10.1016/0921-4526(94)90354-9

Direct demagnetization cooling of high-density solid 3He, T. Okamoto, H. Fukuyama, H. Akimoto, H. Ishimoto, S. Ogawa, Physical Review Letters 72 (1994) 868-871, doi.org/10.1103/PhysRevLett.72.868

A compact copper nuclear demagnetization refrigerator, G. Frossati, P. G. van der Haar, M. W. Meisel, P. Remeijer, S. C. Steel, R. Wagner, C. M. C. M. van Woerkens, Physica B: Condensed Matter 194–196 (1994) 53-54, doi.org/10.1016/0921-4526(94)90356-5

Nuclear demagnetization refrigerator with automatic control, pick up and data process system, A. A. Golub, V. A. Goncharov, V. R. Litvinov, V. A. Mikheev, E. Y. Rudavskii, Y. A. Tokar, A. M. Usenko, V. A. Shvarts, Fizika Nizkih Temperatur 21 (1995) 974-982

Pressure measurement during nuclear demagnetization of BCC and HCP solid 3He, T. Lang, P. L. Moyland, D. A. Sergatskov, J. Xu, E. D. Adams, Y. Takano, Journal of Low Temperature Physics 101 (1995) 677–681, doi.org/10.1007/BF00753373

The new cornell copper demagnetization stage, E. N. Smith, A. Sawada, L. Pollack, K. A. Corbett, J. M. Parpia, R. C. Richardson, Journal of Low Temperature Physics 101 (1995) 593–598, doi.org/10.1007/BF00753359

The new grenoble 100 μK refrigerator, C. Bäuerle, J. Bossy, Yu. M. Bunkov, S. N. Fisher, Chr Gianèse, H. Godfrin, Czechoslovak Journal of Physics 46 (1996) 2791–2792, doi.org/10.1007/BF02570382

Thermodynamic description of nuclear demagnetization experiments, J. Engert, P. G. Strchlow, Czechoslovak Journal of Physics 46 (1996) 2789–2790, doi.org/10.1007/BF02570381

Košice nuclear demagnetization refrigerator, P. Skyba, J. Nyéki, E. Gažo, V. Makroczyová, Yu. M. Bunkov, D. A. Sergackov, A. Feher, Cryogenics 37 (1997) 293-297, doi.org/10.1016/S0011-2275(97)00021-0

Nuclear magnetic properties of aluminium, W. Wendler, P. Smeibidl, F. Pobell, Journal of Low Temperature Physics 108 (1997) 291–304, doi.org/10.1007/BF02398716

Simple Nuclear Demagnetization Stage, V. V. Dmitriev, I. V. Kosarev, D. V. Ponarin, R. Scheibel, Journal of Low Temperature Physics 113 (1998) 945–949, doi.org/10.1023/A:1022579628345

Nuclear cooling and spin properties of rhodium down to picokelvin temperatures, J. T. Tuoriniemi, T. A. Knuuttila, Physica B: Condensed Matter 280 (2000) 474-478, doi.org/10.1016/S0921-4526(99)01839-6

A Versatile Nuclear Demagnetization Cryostat for Ultralow Temperature Research, W. Yao, T. A. Knuuttila, K. K. Nummila, J. E. Martikainen, A. S. Oja, O. V. Lounasmaa, Journal of Low Temperature Physics 120 (2000) 121–150, doi.org/10.1023/A:1004665020659

Cryostat for optical observations below 1 mK and in strong magnetic fields, R. van Rooijen, A. Marchenkov, H. Akimoto, O. Andreeva, P.van de Haar, R. Jochemsen, G. Frossati, Journal of Low Temperature Physics 124 (2001) 497-511, doi.org/10.1023/A:1017527320225

Nuclear orientation and nuclear cooling experiments in Oxford and Helsinki, part 1, Progress before 1940, B. Bleaney, O. V. Lounasmaa,Notes and Records: the Royal Society Journal of the History of Science 57 (2003) 317-322, doi.org/10.1098/rsnr.2003.0217

Nuclear orientation and nuclear cooling experiements in Oxford and Helsinki Part 2. Progress from 1945 to 1970, B. Bleaney, O. V. Lounasmaa, Notes and Records: the Royal Society Journal of the History of Science 57 (2003), 323-330, doi.org/10.1098/rsnr.2003.0218

Study of heat leaks to copper nuclear demagnetization stage, H. Nakagawa, H. Yano, O. Ishikawa, T. Hata, Physica B: Condensed Matter 329–333 (2003) 1606-1607, doi.org/10.1016/S0921-4526(02)02422-5

Direct Nuclear Demagnetization of Two Dimensional Solid 3He Adsorbed on Graphite, R. Masutomi, Y. Karaki, H. Ishimoto, Journal of Low Temperature Physics 134 (2004) 49–54, doi.org/10.1023/B:JOLT.0000012533.21563.b1

Construction of an ultra low temperature cryostat with an automated He-3 melting pressure thermometer, P. Bhupathi, J. Cancino, H. C. Choi, Y. Lee, AIP Conference Proceedings 850 (2006) 1571

Construction of a Nuclear Cooling Stage, P. Strehlow, H. Nuzha, E. Bork, Journal of Low Temperature Physics 147 (2007) 81-93, doi.org/10.1007/s10909-006-9300-y

Method for cooling nanostructures to microkelvin temperatures, A. C. Clark, K. K. Schwarzwälder, T. Bandi, D. Maradan, D. M. Zumbühl, Review of Scientific Instruments 81 (2010) 103904, doi.org/10.1063/1.3489892

Setting up of a microKelvin refrigerator facility at TIFR, H. R. Naren, R. S. Sannabhadti, A. Kumar, V. Arolkar, A. de Waard, G. Frossati, S. Ramakrishan, Current Science 101 (2011) 28-34

The Vienna Nuclear Demagnetization Refrigerator, D. H. Nguyen, A. Sidorenko, M. Müller, S. Paschen, A. Waard, G. Frossati, Journal of Physics: Conference Series 400 (2012) 052024, doi.org/10.1088/1742-6596/400/5/052024

A microkelvin cryogen-free experimental platform with integrated noise thermometry, G. Batey, A. Casey, M. N. Cuthbert, A. J. Matthews, J. Saunders, A. Shibahara, New Journal of Physics 15 (2013) 113034, doi.org/10.1088/1367-2630/15/11/113034

Nuclear demagnetization for ultra-low temperatures, S. Abe, K. Matsumoto, Cryogenics 62 (2014) 213-220, doi.org/10.1016/j.cryogenics.2014.04.004

Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry, I. Todoshchenko, J.-P. Kaikkonen, R. Blaauwgeers, P. J. Hakonen, A. Savin, Review of Scientific Instruments 85 (2014) 085106, doi.org/10.1063/1.4891619

On-chip magnetic cooling of a nanoelectronic device, D. I. Bradley, A. M. Guénault, D. Gunnarsson, R. P. Haley, S. Holt, A. T. Jones, Yu. A. Pashkin, J. Penttilä, J. R. Prance, M. Prunnila, L. Roschier, Scientific Reports 7 (2017) 45566, doi.org/10.1038/srep45566

Magnetic cooling for microkelvin nanoelectronics on a cryofree platform, M. Palma, D. Maradan, L. Casparis, T.-M. Liu, F. N. M. Froning, D. M. Zumbühl, Review of Scientific Instruments 88 (2017) 043902, doi.org/10.1063/1.4979929

Sub-millikelvin station at Synergetic Extreme Condition User Facility, Z. G. Cheng, J. Fan, X. Jing, L. Lu, Chinese Physics B 27 (2018) 070702, doi.org/10.1088/1674-1056/27/7/070702

Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications, R. Toda, S. Murakawa, H. Fukuyama, Journal of Physics: Conference Series 969 (2018) 012093, doi.org/10.1088/1742-6596/969/1/012093

Development of a Sub-mK Continuous Nuclear Demagnetization Refrigerator, D. Schmoranzer, R. Gazizulin, S. Triqueneaux, E. Collin, A. Fefferman, Journal of Low Temperature Physics 196 (2019) 261–267, doi.org/10.1007/s10909-018-02128-9

Indium as a High-Cooling-Power Nuclear Refrigerant for Quantum Nanoelectronics, N. Yurttagül, M. Sarsby, A. Geresdi, Physical Review Applied 12 (2019) 011005, doi.org/10.1103/PhysRevApplied.12.011005

Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures, A. T. Jones, C. P. Scheller, J. R. Prance, Y. B. Kalyoncu, D. M. Zumbühl, R. P. Haley, Journal of Low Temperature Physics 201 (2020) 772–802, doi.org/10.1007/s10909-020-02472-9

Design evaluation of serial and parallel sub-mK continuous nuclear demagnetization refrigerators, D. Schmoranzer, J. Butterworth, S. Triqueneaux, E. Collin, A. Fefferman, Cryogenics 110 (2020) 103119, doi.org/10.1016/j.cryogenics.2020.103119

Cryogen-free one hundred microkelvin refrigerator, J. Yan, J. Yao, V. Shvarts, R.-R. Du, X. Lin, Review of Scientific Instruments 92 (2021) 025120, doi.org/10.1063/5.0036497

Construction of Continuous Magnetic Cooling Apparatus with Zinc-Soldered PrNi5 Nuclear Stages, S. Takimoto, R. Toda, S. Murakawa, H. Fukuyama, Journal of Low Temperature Physics 208 (2022) 492–500, doi.org/10.1007/s10909-022-02801-0

Ultralow temperature refrigerators

  • The new Grenoble 100 microKelvin refrigerator, C. Bäuerle, Y. Bunkov, S.N. Fisher, Chr. Gianese and H. Godfrin, Proc. of the 21st. Int. Conf on Low Temp. Physics, Prague, August 8-14 1996, Czekoslovak J. of Phys. 46, suppl S5, 2791-2792, 1996
  • Cryogen free one hundred micro Kelvin refrigerator, Jiaojie Yan, Jianing Yao, Vladimir Shvarts, Rui Rui Du and Xi Lin, Rev. Sci. Instrum.92, 025120 (2021) https://doi.org/10.1063/5.003649 https://arxiv.org/abs/2010.04472v2
wiki/demag_papers.1668207738.txt.gz · Last modified: 2022/11/11 23:02 by henri.godfrin@neel.cnrs.fr