====== Articles on Nuclear Demagnetization ====== * Nuclear Cooling, N. Kurti, F. N. H. Robinson, F. Simon, D. A. Spohr, Nature 178 (1956) 450, [[https://doi.org/10.1038/178450a0]] * Hyperfine Enhanced Nuclear Magnetic Cooling in Van Vleck Paramagnetic Intermetallic Compounds, K. Andres, E. Bucher, Journal of Applied Physics 42 (1971) 1522-1527, [[https://doi.org/10.1063/1.1660323]] * Nuclear refrigeration of copper, P. M. Berglund, G. J. Ehnholm, R. G. Gylling, O. V. Lounasmaa, R. P. Søvik, Cryogenics 12 (1972) 297-299, [[https://doi.org/10.1016/0011-2275(72)90043-4]] * Ultralow temperatures-how and why, W. J. Huiskamp, O. V. Lounasmaa, Reports on Progress in Physics 36 (1973) 423 -496, [[https://doi.org/10.1088/0034-4885/36/4/002]] * Cooling of 3He to 1 mK by nuclear demagnetization of PrNi5, K.Andres, S.Darack, Physica B+C 86–88 (1977) 1071-1076, [[https://doi.org/10.1016/0378-4363(77)90799-9]] * Nuclear Demagnetization of PrS and PrNi5, C. Buchal, K. J. Fischer, M. Kubota, R. M. Mueller, F. Pobell, Journal de Physique Lettres 39 (1978) L457-L458, [[https://doi.org/10.1051/jphyslet:019780039023045700 ]] * Two Stage Nuclear Demagnetization Experiments, R. Hunik, E. Bongers, J.A. Konter, W.J. Huiskamp, Journal de Physique Colloques 39 (1978) C6-1155-C6-1156, [[https://doi.org/10.1051/jphyscol:19786511]] * A Double-stage nuclear demagnetization refrigerator, R. M. Mueller, Chr. Buchal, H. R. Folle, M. Kubota, F. Pobell, Cryogenics 20 (1980) 395-407, [[https://doi.org/10.1016/S0011-2275(80)80049-X]] * Nuclear refrigeration properties of PrNi5, H. R. Folle, M. Kubota, Ch. Buchal, R. M. Mueller, F. Pobell, Zeitschrift für Physik B Condensed Matter 41 (1981) 223–228, [[https://doi.org/10.1007/BF01294426]] * The quest for ultralow temperatures: What are the limitations?, F. Pobell, Physica B+C 109–110 (1982) 1485-1498, [[https://doi.org/10.1016/0378-4363(82)90172-3]] * New method for nuclear cooling into the microkelvin regime, D. I. Bradley, A. M. Guénault, V. Keith, C. J. Kennedy, I. E. Miller, S. G. Musset, G. R. Pickett, W. P. Pratt, Jr., Journal of Low Temperature Physics 57 (1984) 359-390, [[https://doi.org/10.1007/BF00681199]] * Two-stage nuclear demagnetization refrigerator reaching 27 µK, H. Ishimoto, N. Nishida, T. Furubayashi, M. Shinohara, Y. Takano, Y. Miura, K. Ôno, Journal of Low Temperature Physics 55 (1984) 17–31, [[https://doi.org/10.1007/BF00683649]] * Adiabatic nuclear demagnetization: Two sophisticated experiments, O. V. Lounasmaa, Physica B+C 126 (1984) 8-17, [[https://doi.org/10.1016/0378-4363(84)90140-2]] * Optimization procedure for the cooling of Liquid 3He by adiabatic demagnetization of praseodymium nickel, J. M. Parpia, W. P. Kirk, P. S. Kobiela, T. L. Rhodes, Z. Olejniczak, G. N. Parker, Review of Scientific Instruments 56 (1985) 437-443, [[https://doi.org/10.1063/1.1138319]] * The Bayreuth Nuclear Demagnetization Refrigerator, K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, F. Pobell, Journal of Low Temperature Physics 73 (1988) 101-136, [[https://doi.org/10.1007/BF00114919]] * A Nuclear Demagnetization Cryostat for Thermometry, W. Buck, D. Hechtfischer, A. Hoffmann, Physica B 165 1990) 49-50 * Compact PrNi5 nuclear demagnetization cryostat, S. A. J. Wiegers, T. Hata, C. C. Kranenburg, P. G. van de Haar, R. Jochemsen, G. Frossati, Cryogenics 30 (1990) 770-774, [[https://doi.org/10.1016/0011-2275(90)90274-G]] * Nuclear refrigeration and thermometry at microkelvin temperatures, F. Pobell, Journal of Low Temperature Physics 87 (1992) 635–649, [[https://doi.org/10.1007/BF00114919]] * Nuclear demagnetization cryostat at University of Florida Microkelvin Laboratory, J. Xu, O. Avenel, J. S. Xia, M.-F. Xu, T. Lang, P. L. Moyland, W. Ni, E. D. Adams, G. G. Ihas, M. V. Meisel, N. S. Sullivan, Y. Takano, Journal of Low Temperature Physics 89 (1992) 719-723, [[https://doi.org/10.1007/BF00694125]] * A nuclear demagnetization cryostat for nuclear ordering of hcp solid 3He, S. Abe, M. Nozawa, A. Ikeya, H. Tsujii, S. Inoue, T. Mamiya, Physica B: Condensed Matter 194–196 (1994) 49-50, [[https://doi.org/10.1016/0921-4526(94)90354-9]] * Direct demagnetization cooling of high-density solid 3He, T. Okamoto, H. Fukuyama, H. Akimoto, H. Ishimoto, S. Ogawa, Physical Review Letters 72 (1994) 868-871, [[https://doi.org/10.1103/PhysRevLett.72.868]] * A compact copper nuclear demagnetization refrigerator, G. Frossati, P. G. van der Haar, M. W. Meisel, P. Remeijer, S. C. Steel, R. Wagner, C. M. C. M. van Woerkens, Physica B: Condensed Matter 194–196 (1994) 53-54, [[https://doi.org/10.1016/0921-4526(94)90356-5]] * Nuclear demagnetization refrigerator with automatic control, pick up and data process system, A. A. Golub, V. A. Goncharov, V. R. Litvinov, V. A. Mikheev, E. Y. Rudavskii, Y. A. Tokar, A. M. Usenko, V. A. Shvarts, Fizika Nizkih Temperatur 21 (1995) 974-982 * Pressure measurement during nuclear demagnetization of BCC and HCP solid 3He, T. Lang, P. L. Moyland, D. A. Sergatskov, J. Xu, E. D. Adams, Y. Takano, Journal of Low Temperature Physics 101 (1995) 677–681, [[https://doi.org/10.1007/BF00753373]] * The new cornell copper demagnetization stage, E. N. Smith, A. Sawada, L. Pollack, K. A. Corbett, J. M. Parpia, R. C. Richardson, Journal of Low Temperature Physics 101 (1995) 593–598, [[https://doi.org/10.1007/BF00753359]] * The new grenoble 100 μK refrigerator, C. Bäuerle, J. Bossy, Yu. M. Bunkov, S. N. Fisher, Chr Gianèse, H. Godfrin, Czechoslovak Journal of Physics 46 (1996) 2791–2792, [[https://doi.org/10.1007/BF02570382]] * Thermodynamic description of nuclear demagnetization experiments, J. Engert, P. G. Strchlow, Czechoslovak Journal of Physics 46 (1996) 2789–2790, [[https://doi.org/10.1007/BF02570381]] * Košice nuclear demagnetization refrigerator, P. Skyba, J. Nyéki, E. Gažo, V. Makroczyová, Yu. M. Bunkov, D. A. Sergackov, A. Feher, Cryogenics 37 (1997) 293-297, [[https://doi.org/10.1016/S0011-2275(97)00021-0]] * Nuclear magnetic properties of aluminium, W. Wendler, P. Smeibidl, F. Pobell, Journal of Low Temperature Physics 108 (1997) 291–304, [[https://doi.org/10.1007/BF02398716]] * Simple Nuclear Demagnetization Stage, V. V. Dmitriev, I. V. Kosarev, D. V. Ponarin, R. Scheibel, Journal of Low Temperature Physics 113 (1998) 945–949, [[https://doi.org/10.1023/A:1022579628345]] * Nuclear cooling and spin properties of rhodium down to picokelvin temperatures, J. T. Tuoriniemi, T. A. Knuuttila, Physica B: Condensed Matter 280 (2000) 474-478, [[https://doi.org/10.1016/S0921-4526(99)01839-6]] * A Versatile Nuclear Demagnetization Cryostat for Ultralow Temperature Research, W. Yao, T. A. Knuuttila, K. K. Nummila, J. E. Martikainen, A. S. Oja, O. V. Lounasmaa, Journal of Low Temperature Physics 120 (2000) 121–150, [[https://doi.org/10.1023/A:1004665020659]] * Cryostat for optical observations below 1 mK and in strong magnetic fields, R. van Rooijen, A. Marchenkov, H. Akimoto, O. Andreeva, P.van de Haar, R. Jochemsen, G. Frossati, Journal of Low Temperature Physics 124 (2001) 497-511, [[https://doi.org/10.1023/A:1017527320225]] * Nuclear orientation and nuclear cooling experiments in Oxford and Helsinki, part 1, Progress before 1940, B. Bleaney, O. V. Lounasmaa,Notes and Records: the Royal Society Journal of the History of Science 57 (2003) 317-322, [[https://doi.org/10.1098/rsnr.2003.0217]] * Nuclear orientation and nuclear cooling experiements in Oxford and Helsinki Part 2. Progress from 1945 to 1970, B. Bleaney, O. V. Lounasmaa, Notes and Records: the Royal Society Journal of the History of Science 57 (2003), 323-330, [[https://doi.org/10.1098/rsnr.2003.0218]] * Study of heat leaks to copper nuclear demagnetization stage, H. Nakagawa, H. Yano, O. Ishikawa, T. Hata, Physica B: Condensed Matter 329–333 (2003) 1606-1607, [[https://doi.org/10.1016/S0921-4526(02)02422-5]] * Direct Nuclear Demagnetization of Two Dimensional Solid 3He Adsorbed on Graphite, R. Masutomi, Y. Karaki, H. Ishimoto, Journal of Low Temperature Physics 134 (2004) 49–54, [[https://doi.org/10.1023/B:JOLT.0000012533.21563.b1]] * Construction of an ultra low temperature cryostat with an automated He-3 melting pressure thermometer, P. Bhupathi, J. Cancino, H. C. Choi, Y. Lee, AIP Conference Proceedings 850 (2006) 1571 * Construction of a Nuclear Cooling Stage, P. Strehlow, H. Nuzha, E. Bork, Journal of Low Temperature Physics 147 (2007) 81-93, [[https://doi.org/10.1007/s10909-006-9300-y]] * Method for cooling nanostructures to microkelvin temperatures, A. C. Clark, K. K. Schwarzwälder, T. Bandi, D. Maradan, D. M. Zumbühl, Review of Scientific Instruments 81 (2010) 103904, [[https://doi.org/10.1063/1.3489892]] * Setting up of a microKelvin refrigerator facility at TIFR, H. R. Naren, R. S. Sannabhadti, A. Kumar, V. Arolkar, A. de Waard, G. Frossati, S. Ramakrishan, Current Science 101 (2011) 28-34]] * The Vienna Nuclear Demagnetization Refrigerator, D. H. Nguyen, A. Sidorenko, M. Müller, S. Paschen, A. Waard, G. Frossati, Journal of Physics: Conference Series 400 (2012) 052024, [[https://doi.org/10.1088/1742-6596/400/5/052024]] * A microkelvin cryogen-free experimental platform with integrated noise thermometry, G. Batey, A. Casey, M. N. Cuthbert, A. J. Matthews, J. Saunders, A. Shibahara, New Journal of Physics 15 (2013) 113034, [[https://doi.org/10.1088/1367-2630/15/11/113034]] * Nuclear demagnetization for ultra-low temperatures, S. Abe, K. Matsumoto, Cryogenics 62 (2014) 213-220, [[https://doi.org/10.1016/j.cryogenics.2014.04.004]] * Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry, I. Todoshchenko, J.-P. Kaikkonen, R. Blaauwgeers, P. J. Hakonen, A. Savin, Review of Scientific Instruments 85 (2014) 085106, [[https://doi.org/10.1063/1.4891619]] * On-chip magnetic cooling of a nanoelectronic device, D. I. Bradley, A. M. Guénault, D. Gunnarsson, R. P. Haley, S. Holt, A. T. Jones, Yu. A. Pashkin, J. Penttilä, J. R. Prance, M. Prunnila, L. Roschier, Scientific Reports 7 (2017) 45566, [[https://doi.org/10.1038/srep45566]] * Magnetic cooling for microkelvin nanoelectronics on a cryofree platform, M. Palma, D. Maradan, L. Casparis, T.-M. Liu, F. N. M. Froning, D. M. Zumbühl, Review of Scientific Instruments 88 (2017) 043902, [[https://doi.org/10.1063/1.4979929]] * Sub-millikelvin station at Synergetic Extreme Condition User Facility, Z. G. Cheng, J. Fan, X. Jing, L. Lu, Chinese Physics B 27 (2018) 070702, [[https://doi.org/10.1088/1674-1056/27/7/070702]] * Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications, R. Toda, S. Murakawa, H. Fukuyama, Journal of Physics: Conference Series 969 (2018) 012093, [[https://doi.org/10.1088/1742-6596/969/1/012093]] * Development of a Sub-mK Continuous Nuclear Demagnetization Refrigerator, D. Schmoranzer, R. Gazizulin, S. Triqueneaux, E. Collin, A. Fefferman, Journal of Low Temperature Physics 196 (2019) 261–267, [[https://doi.org/10.1007/s10909-018-02128-9]] * Indium as a High-Cooling-Power Nuclear Refrigerant for Quantum Nanoelectronics, N. Yurttagül, M. Sarsby, A. Geresdi, Physical Review Applied 12 (2019) 011005, [[https://doi.org/10.1103/PhysRevApplied.12.011005]] * Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures, A. T. Jones, C. P. Scheller, J. R. Prance, Y. B. Kalyoncu, D. M. Zumbühl, R. P. Haley, Journal of Low Temperature Physics 201 (2020) 772–802, [[https://doi.org/10.1007/s10909-020-02472-9]] * Design evaluation of serial and parallel sub-mK continuous nuclear demagnetization refrigerators, D. Schmoranzer, J. Butterworth, S. Triqueneaux, E. Collin, A. Fefferman, Cryogenics 110 (2020) 103119, [[https://doi.org/10.1016/j.cryogenics.2020.103119]] * Progress in Cooling Nanoelectronic Devices to Ultra‑Low Temperatures, A. T. Jones, C. P. Scheller, J. R. Prance, Y. B. Kalyoncu, D. M. Zumbühl, R. P. Haley, Journal of Low Temperature Physics, 201, pages772–802 (2020) (https://doi.org/10.1007/s10909-020-02472-9) * Cryogen-free one hundred microkelvin refrigerator, J. Yan, J. Yao, V. Shvarts, R.-R. Du, X. Lin, Review of Scientific Instruments 92 (2021) 025120, [[https://doi.org/10.1063/5.0036497]] * Construction of Continuous Magnetic Cooling Apparatus with Zinc-Soldered PrNi5 Nuclear Stages, S. Takimoto, R. Toda, S. Murakawa, H. Fukuyama, Journal of Low Temperature Physics 208 (2022) 492–500, [[https://doi.org/10.1007/s10909-022-02801-0]]