

- Andreev Reflection in Superfluid He-3: A Probe for Quantum Turbulence
Bradley et al., Annual Review of Condensed Matter Physics Vol. 8: 407-430 (2017) - Operating Nanobeams in a Quantum Fluid
Bradley et al., Nature Scientific Reports 7, 4876 (2017) - Single Quantum Level Electron Turnstile
D.M.T. Van Zanten et al., Phys. Rev. Lett. 116 166801 (2016) - Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices
J. Röntynen, T. Ojanen, Phys. Rev. Lett. 114 236803, (2015) - Squeezing of Quantum Noise of Motion in a Micromechanical Resonator
J.-M. Pirkkalainen et al., Phys. Rev. Lett 115, 24 (2015) - Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters
S. Kempf, A. Ferring, A. Fleischmann, C. Enss, Supercond. Sci. Technol. 28 , 045008 (2015)
Ex situ tunnel junction process technique characterized by Coulomb blockade thermometry
M. Prunnila, M. Meschke, D. Gunnarsson, S. Enouz-Vedrenne, J.M. Kivioja, J.P. PekolaThe authors investigate a wafer scale tunnel junction fabrication method, where a plasmaetched via through a dielectric layer covering bottom Alelectrode defines the tunnel junction area. The ex situ tunnel barrier is formed by oxidation of the bottom electrode in the junction area. Room temperature resistance mapping over a 150 mm wafer gives local deviation values of the tunnel junction resistance that fall below 7.5% with an average of 1.3%. The deviation is further investigated by sub-1 K measurements of a device, which has one tunnel junction connected to four arrays consisting of N junctions (= 41, junction diameter 700 nm). The differential conductance is measured in single-junction and array Coulomb blockade thermometer operation modes. By fitting the experimental data to the theoretical models, the authors found an upper limit for the local tunnel junction resistance deviation of ~ 5% for the array of 2N +1junctions. This value is of the same order as the minimum detectable deviation defined by the accuracy of the authors’ experimental setup.
J. Vac. Sci. Technol. B 28, 1026 (2010)
doi: 10.1116/1.3490406