

Selected Publications
- Andreev Reflection in Superfluid He-3: A Probe for Quantum Turbulence
Bradley et al., Annual Review of Condensed Matter Physics Vol. 8: 407-430 (2017) - Operating Nanobeams in a Quantum Fluid
Bradley et al., Nature Scientific Reports 7, 4876 (2017) - Single Quantum Level Electron Turnstile
D.M.T. Van Zanten et al., Phys. Rev. Lett. 116 166801 (2016) - Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices
J. Röntynen, T. Ojanen, Phys. Rev. Lett. 114 236803, (2015) - Squeezing of Quantum Noise of Motion in a Micromechanical Resonator
J.-M. Pirkkalainen et al., Phys. Rev. Lett 115, 24 (2015) - Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters
S. Kempf, A. Ferring, A. Fleischmann, C. Enss, Supercond. Sci. Technol. 28 , 045008 (2015)
History Dependence of Turbulence Generated by a Vibrating Wire in Superfluid He-4 at 1.5 K
D.I. Bradley, A.M. Guenault, S.N. Fisher, R.P. Haley, M.J. Jackson, D. Nye, K. OWe report on the onset of turbulence in normal and superfluid 4He using several 13.5 μm diameter vibrating wire resonators placed in a cell, filtered from the surrounding helium bath. We measured the force-velocity characteristics of the wires in normal and superfluid helium over a velocity range up to several meters per second. The transition from laminar to turbulent behavior can be clearly identified. Surprisingly we find that, depending on the cooling history, turbulence in the superfluid does not always develop fully.
J. Low Temp. Phys. 162, 375 (2011)
doi: 10.1007/s10909-010-0296-y