

- Andreev Reflection in Superfluid He-3: A Probe for Quantum Turbulence
Bradley et al., Annual Review of Condensed Matter Physics Vol. 8: 407-430 (2017) - Operating Nanobeams in a Quantum Fluid
Bradley et al., Nature Scientific Reports 7, 4876 (2017) - Single Quantum Level Electron Turnstile
D.M.T. Van Zanten et al., Phys. Rev. Lett. 116 166801 (2016) - Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices
J. Röntynen, T. Ojanen, Phys. Rev. Lett. 114 236803, (2015) - Squeezing of Quantum Noise of Motion in a Micromechanical Resonator
J.-M. Pirkkalainen et al., Phys. Rev. Lett 115, 24 (2015) - Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters
S. Kempf, A. Ferring, A. Fleischmann, C. Enss, Supercond. Sci. Technol. 28 , 045008 (2015)
Realizing quantum materials with Helium: Helium films at ultralow temperatures, from strongly correlated atomically layered films to topological superfluidity
J. SaundersThis article provides an overview, primarily from an experimental perspective, of recent progress and future prospects in using helium to realize a range of quantum materials of generic interest, by “top-down” and “bottom-up” nanotechnology. We can grow model systems to realise new quantum states of matter, and explore key issues in condensed matter physics. In the language of cold atomic gases, two dimensional and confined 3He and 4He provide “quantum simulators”, with the potential to uncover new emergent quantum states. These include: strictly 2D Fermi system with Mott-Hubbard transition; interacting coupled 2D fermion-boson system; heavy fermion quantum criticality; ideal 2D frustrated ferromagnetism; 2D quantum spin liquid; intertwined superfluid and density wave order with emergent large symmetry; topological mesoscopic superfluidity (new materials and emergent excitations).
Topological Phase Transitions and New Developments, pp. 165-196
doi: 10.1142/97898132713400012