

- Andreev Reflection in Superfluid He-3: A Probe for Quantum Turbulence
Bradley et al., Annual Review of Condensed Matter Physics Vol. 8: 407-430 (2017) - Operating Nanobeams in a Quantum Fluid
Bradley et al., Nature Scientific Reports 7, 4876 (2017) - Single Quantum Level Electron Turnstile
D.M.T. Van Zanten et al., Phys. Rev. Lett. 116 166801 (2016) - Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices
J. Röntynen, T. Ojanen, Phys. Rev. Lett. 114 236803, (2015) - Squeezing of Quantum Noise of Motion in a Micromechanical Resonator
J.-M. Pirkkalainen et al., Phys. Rev. Lett 115, 24 (2015) - Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters
S. Kempf, A. Ferring, A. Fleischmann, C. Enss, Supercond. Sci. Technol. 28 , 045008 (2015)
Thermal transport of helium-3 in a strongly confining channel
D. Lotnyk, A. Eyal, N. Zhelev, T.S. Abhilash, E.N. Smith, M. Terilli, J. Wilson, E. Mueller, D. Einzel, J. Saunders, J.M. ParpiaIn a neutral system such as liquid helium-3, transport of mass, heat, and spin provide information analogous to electrical counterparts in metals, superconductors and topological materials. Of particular interest is transport in strongly confining channels of height approaching the superfluid coherence length, where new quantum states are found and excitations bound to surfaces and edges should be present. Here we report on the thermal conduction of helium-3 in a 1.1~μm high microfabricated channel. In the normal state we observe a diffusive thermal conductivity that is approximately temperature independent, consistent with recent work on the interference of bulk and boundary scattering. In the superfluid state we measure diffusive thermal transport in the absence of thermal counterflow. An anomalous thermal response is also detected in the superfluid which we suggest may arise from a flux of surface excitations.
arXiv:1910.08414
arxiv: https://arxiv.org/abs/1910.08414