

- Andreev Reflection in Superfluid He-3: A Probe for Quantum Turbulence
Bradley et al., Annual Review of Condensed Matter Physics Vol. 8: 407-430 (2017) - Operating Nanobeams in a Quantum Fluid
Bradley et al., Nature Scientific Reports 7, 4876 (2017) - Single Quantum Level Electron Turnstile
D.M.T. Van Zanten et al., Phys. Rev. Lett. 116 166801 (2016) - Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices
J. Röntynen, T. Ojanen, Phys. Rev. Lett. 114 236803, (2015) - Squeezing of Quantum Noise of Motion in a Micromechanical Resonator
J.-M. Pirkkalainen et al., Phys. Rev. Lett 115, 24 (2015) - Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters
S. Kempf, A. Ferring, A. Fleischmann, C. Enss, Supercond. Sci. Technol. 28 , 045008 (2015)
Atomically Layered Helium Films at Ultralow Temperatures: Model Systems for Realizing Quantum Materials
John Saunders, Brian Cowan, Jan NyékiThis year is also the 50th anniversary of the discovery of exfoliated graphite as a particularly uniform substrate (Thomy and Duval in J Chim Phys 66:1966, 1969. https://doi.org/10.1051/jcp/196966s21966, J Chim Phys 67:286, 1970. https://doi.org/10.1051/jcp/1970670286, J Chim Phys 67:1101, 1970. https://doi.org/10.1051/jcp/1970671101). In this article, we focus on the study of helium films on graphite-based substrates at ultralow temperatures. We provide a flavour of the historical development of this subject and a perspective on the current status. We discuss how atomically layered helium films provide model systems for the realization of a broad range of quantum materials of generic significance. Future prospects arising from new techniques and new substrates will also be discussed.
J Low Temp Phys (2020)
doi: 10.1007/s10909-020-02448-9