

- Andreev Reflection in Superfluid He-3: A Probe for Quantum Turbulence
Bradley et al., Annual Review of Condensed Matter Physics Vol. 8: 407-430 (2017) - Operating Nanobeams in a Quantum Fluid
Bradley et al., Nature Scientific Reports 7, 4876 (2017) - Single Quantum Level Electron Turnstile
D.M.T. Van Zanten et al., Phys. Rev. Lett. 116 166801 (2016) - Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices
J. Röntynen, T. Ojanen, Phys. Rev. Lett. 114 236803, (2015) - Squeezing of Quantum Noise of Motion in a Micromechanical Resonator
J.-M. Pirkkalainen et al., Phys. Rev. Lett 115, 24 (2015) - Direct-current superconducting quantum interference devices for the readout of metallic magnetic calorimeters
S. Kempf, A. Ferring, A. Fleischmann, C. Enss, Supercond. Sci. Technol. 28 , 045008 (2015)
Transport and Phonon Damping in 4He
K. Beauvois, H. Godfrin, E. Krotscheck, R. E. ZillichThe dynamic structure function S(k,ω) informs about the dispersion and damping of excitations. We have recently (Beauvois et al. in Phys Rev B 97:184520, 2018) compared experimental results for S(k,ω) from high-precision neutron scattering experiments and theoretical results using the “dynamic many-body theory” (DMBT), showing excellent agreement over the whole experimentally accessible pressure regime. This paper focuses on the specific aspect of the propagation of low-energy phonons. We report calculations of the phonon mean-free path and phonon lifetime in liquid 4 He as a function of wavelength and pressure. Historically, the question was of interest for experiments of quantum evaporation. More recently, there is interest in the potential use of 4 He as a detector for low-energy dark matter (Schulz and Zurek in Phys Rev Lett 117:121302/1, 2016). While the mean-free path of long wavelength phonons is large, phonons of intermediate energy can have a short mean-free path of the order of μm . Comparison of different levels of theory indicates that reliable predictions of the phonon mean-free path can be made only by using the most advanced many-body method available, namely DMBT.
J. Low Temp. Phys. 197, 113 (2019)
doi: 10.1007/s10909-019-02219-1
arxiv: https://arxiv.org/abs/1905.04759