- Slippage and Boundary Layer Probed in an Almost Ideal Gas by a Nanomechanical Oscillator

M. Defoort et al., Phys. Rev. Lett.**113**, 136101 (2014) - Evidence for the role of normal-state electrons in nanoelectromechanical damping mechanisms at very low temperatures

K.J. Lulla et al., Phys. Rev. Lett.**110**, 177206 (2013) - Phase Diagram of the Topological Superfluid
^{3}He Confined in a Nanoscale Slab Geometry

L.V. Levitin et al., Science**340**, 841-844 (2013) - Energy and angular momentum balance in wall-bounded quantum turbulence at very low temperatures

J.J. Hosio et al., Nature Commun.**4**, 1614 (2013) - Evidence for Helical Nuclear Spin Order in GaAs Quantum Wires

C.P. Scheller et al., Phys. Rev. Lett.**112**, 066801 (2013) - Observation of a roton collective mode in a two-dimensional Fermi liquid

H. Godfrin et al., Nature**483**, 576 (2012) - The Josephson heat interferometer

F. Giazotto, M.J. Martinez-Perez, Nature**492**, 401 (2012)

## Determination of the neutrino mass by electron capture in ^{163}Ho and the role of the three-hole states in ^{163}Dy

*A. Faessler, C. Enss, L. Gastaldo, F. Simkovic*

^{163}Ho to ^{163}Dy is, probably due to the small *Q *value of about 2.5 keV, the best case to determine the neutrino mass by electron capture. The energy of the *Q* value is distributed between the excitation of dysprosium (and the neglected small recoil of holmium) and the relativistic energy of the emitted neutrino including the rest mass. The reduction of the upper end of the deexcitation spectrum of dysprosium below the *Q* values allows us to determine the neutrino mass. The excitation of dysprosium can be calculated in the sudden approximation of the overlap of the electron wave functions of holmium minus the captured electron and one-, two-, three-, and multiple hole excitations in dysprosium. Robertson [R. G. H. Robertson, Phys. Rev. C **91**, 035504 (2015)] and Faessler and Simkovic [A. Faessler and F. Simkovic, Phys. Rev. C **91**, 045505 (2015)] have calculated the influence of the two-hole states on the dysprosium spectrum. Here for the first time the influence of the three-hole states on the deexcitation bolometer spectrum of^{ 163}Dy is presented. The electron wave functions and the overlaps are calculated self-consistently in a fully relativistic and antisymmetrized Dirac-Hartree-Fock approach in holmium and in dysprosium. The electron orbitals in Dy are determined including the one-hole states in the self-consistent iteration. The influence of the three-hole states on the Dy deexcitation (by x rays and Auger electrons) can hardly be seen. The three-hole states seem not to be relevant for the determination of the electron neutrino mass.

*Phys. Rev. C*

**91**, 064302 (2015)doi:

*10.1103/PhysRevC.91.064302*